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We investigate theoretically and via computer simulation the stationary nonequi- 
librium states of a stochastic lattice gas under the influence of a uniform 
external field E. The effect of the field is to bias jumps in the field direction and 
thus produce a current carrying steady state. Simulations on a periodic 30 • 30 
square lattice with attractive nearest-neighbor interactions suggest a nonequilib- 
rium phase transition from a disordered phase to an ordered one, similar to the 
para-to-ferromagnetic transition in equilibrium E = 0. At low temperatures and 
large E the system segregates into two phases with an interface oriented parallel 
to the field. The critical temperature is larger than the equilibrium Onsager value 
a t E  = 0 and increases with the field. For repulsive interactions the usual 
equilibrium phase transition (ordering on sublattices) is suppressed. We report 
on conductivity, bulk diffusivity, structure function, etc. in the steady state over 
a wide range of temperature and electric field. We also present rigorous proofs 
of the Kubo formula for bulk diffusivity and electrical conductivity and show 
the positivity of the entropy production for a general class of stochastic lattice 
gases in a uniform electric field. 
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INTRODUCTION 

The equilibrium properties of macroscopic systems, with a given micro 
scopic Hamiltonian, can be obtained as suitable averages in well-definec 
Gibbs ensembles. While this only solves the problem in principle--th~ 
evaluation of integrals involving approximately 1023 variables is not simpk 
--it  does provide a starting point for both qualitative understanding ant 
quantitative approximations to equilibrium behavior. In addition man3 
interesting equilibrium phenomena, such as phase transitions, can be stud 
ied explicitly in simplified lattice model systems. 

Our understanding of the statistical mechanics of nonequilibriur~ 
phenomena is much less satisfactory at the present time. We do not haw 
any general prescription for choosing appropriate ensembles even for th~ 
simplest nonequilibrium systems, e.g., those in a stationary state in whicP 
steady particle or heat currents are maintained. Attempts to model suck 
systems have so far yielded more or less explicit stationary ensembles onb 
for noninteracting systems, e.g., ideal gases and harmonic crystals. (1) 

In this note we describe theoretical investigations and computer simu 
lations of the stationary nonequilibrium states of an interacting system 
often used to model a fast ionic conductor. (2) The nonequilibrium state i~ 
produced by a uniform external electric field E, which causes a steady 
current to flow in the system: the system may be thought of as a closed 
loop, represented by periodic boundary conditions. The system also inter. 
acts, stochastically, with a heat reservoir at a fixed temperature T. The 
reservoir absorbs the heat generated by the current and maintains the 
steady state. 

In this idealized model system the particles or ions are located al 
lattice sites and interact with a nearest-neighbor pair potential J. Their 
stochastic dynamics consists of jumps to neighboring unoccupied sites (witl~ 
periodic boundary conditions), i.e., Kawasaki-type dynamics. In the ab- 
sence of an electric field, E = 0, the transition rates are such that the 
stationary state of the system is the Gibbs equilibrium state at the reservoiI 
temperature T. The uniform field E, which is not the gradient of a 
potential, biases the jumps in the direction of E. (We may think of the field 
as produced by a uniformly increasing magnetic flux through a lo0P. ) 

Our rigorous results for this system are--despite the simplicity of the 
model--confined to rather general properties. We prove that, as expected, 
the total entropy production is positive and show that to linear order in s 
the steady state and the state of minimum entropy production coincide. We 
prove the validity of the Kubo formula and the Einstein relation for the 
electrical conductivity and bulk diffusivity at zero field. The Kubo formula 
for the bulk diffusivity also holds in the steady state with finite field E 
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(This is, as far as we know, the first rigorous proof of the Kubo relation for 
a steady-state transport coefficient in an interacting system.) 

The computer simulations on the other hand give more detailed if less 
reliable (certainly less rigorous) results. They were done on a half-filled 
one-dimensional lattice with 200 sites and on a two-dimensional square 
lattice of 900 sites--both with periodic boundary conditions. The results in 
two dimensions suggest the existence of a phase transition at low tempera- 
tures which is strongly influenced, perhaps even dominated, by the electric 
field. This is indicated by the apparent segregation of the system in a 
direction perpendicular to the field into a "fluid" and "gas" phase. For the 
equilibrium system, E = 0, a segregation into "randomly oriented" regions 
takes place (in a macroscopic system) below the Onsagar critical temper a- 
ture T C ~- 0.44]JI/  KB. (3) Defining the corresponding Tc(E ) as the apparent 
critical temperature in presence of the field we find that it increases with E 
for J > 0 (attractive) and decreases, possibly to zero, when E is very large, 
for J < 0 (repulsive). A rough phase diagram for J > 0, E = oe, can thus be 
obtained. A preliminary account of our results has been given in Ref. 4. 

In Section 1 we describe our model in more detail. In Sections 2 and 3 
we provide some theoretical background for the numerical results presented 
in the following two sections. We report results on the steady-state current, 
the zero-frequency conductivity and bulk diffusivity, the structure function, 
the nearest-neighbor correlations, and the specific heat. The density of the 
system is always 1/'2 but we cover a wide range of temperatures and 
electric fields. The last three sections describe the exact results mentioned 
earlier and also include a discussion on the various ways used to determine 
numerically the bulk diffusivity. Some detailed calculations are left for the 
appendices. 

1. DESCRIPTION OF THE MODEL AND DYNAMICS 

We consider a stochastic lattice gas in the presence of a constant 
external electric field. Particles move on a simple (hyper) cubic lattice of 
dimension d. There is at most one particle per lattice site (hard-core 
exclusion). The system is confined to a box A c Z d with periodic boundary 
conditions. The state space of the system is the set of all possible configura- 
tions. We denote the occupation variables by r/x, 

1 
r/x= 0 

if site x ~ A is occupied 

is site x ~ A is empty 

and the full particle configuration by r /=  {r/x)x~A" 
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The dynamics is completely specified by prescribing the jump rates of 
the particles. To incorporate the hard-core exclusion it is convenient to 
think of them as exchange rates and to define 

c(y ,x ,n)  = c(x, y,n) >1 0 (1.1) 

as the rate at which the occupation at sites x and y are exchanged when the 
configuration is n- If nx = hi, then the exchange does not alter the configu- 
ration of the particles, considered identical here, and we may fix the value 
of c(x, y, n) arbitrarily, e.g., equal to zero. (The situation would be different 
if we were to consider the motion of test particles, i.e., self-diffusion. (s'6)) If 
nx v ~ ny, e.g., if ~x = 1 and ny = 0, then c(x, Y,n) is the rate at which the 
particle at x jumps to the empty site a ty .  Letting n xy denote the configura- 
tion n with occupation at sites x and y interchanged, i.e., 

t 
ny for z = x 

(nXY)~ = nx for z = y  

nz for z va x, y 

the time evolution of a probability distribution Or(n) is given by the master 
equation 

d Pt(n) = 1 2 nXY)0,(n xy) - 
x,y A 

= Lpt(n ) (1.2) 

To Proceed we have to specify the jump rates. General considerations 
provide us with certain constraints, but as will be seen later some important 
properties of the model may depend on the detailed choice of the rates. We 
list and motivate our conditions on the jump rates ce(x, Y,n). (We have 
added the subscript E to make the dependence on the electric field 
explicit.) 

(i) For simplicity we allow only nearest-neighbor jumps, i.e., cu(x, y, 
n) = 0 for Ix - y] > 1. To avoid degeneracies it is also useful to assume that 
cE(x, Y,n) > 0 for Ix - y ]  = 1 and ~x =~ ny. This condition assures that the 
number of particles is the only conserved quantity. We will further assume, 
as is usually done, that eE(x,y,n) depends only on the 4 d - 2  nearest 
neighbors of the bond (x, y). 

(ii) Our model should describe correctly thermal equilibrium. There- 
fore for  zero electric field we impose the condition of detailed balance 

Co(X, Y, n) = Co(X, Y, n xy )e-B[/4(nxY)-/4(n)l (1.3) 

Here/3 is the inverse temperature and H(~) is the energy of the configura- 
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tion ~. This we choose to be given by the usual nearest-neighbor Hamilto- 
nian 

H(~)  = - �89 ~ ~x~/y (1.4) 
x,y cA, [x- yl = 1 

J > 0 corresponds to an attractive and J < 0 to a repulsive interaction. 
To model the electric field one assumes that jumps in  the direction of 

the field are favored and jumps opposite to the direction of the field are 
suppressed. Physically it seems reasonable still to assume a local detailed 
balance but now including the work done by the electric field in the jump. 
This yields 

cE(x,  y,~l) = cE(x,  y,~XY)e-BI~l("X')-H(~)]eE'(x-Y)(nx-~y ) (1.5) 

Physically E stands for the combination qflE, where q is the charge and E 
the applied external electric field. 

Remark .  Notice that because of the periodic boundary conditions 
the electric field energy cannot be included in the Hamiltonian. In particu- 
lar 

] 
is not invariant under the dynamics with rates cE(x, Y,~1), i.e., it is not a 
stationary solution of (1.2). For boundary conditions corresponding to a 
closed box (1.6) would be invariant. This state would describe then a gas in 
a uniform field in thermal equilibrium with no transport, which is clearly of 
no interest to us here. 

(iii) Finally, it seems natural, although not necessary, to assume 
certain symmetry and homogeneity properties of the jump rates. We require 
that the rates are invariant under translations, i.e., cE(x + a, y + a,%~) 
= ce(x,  y ,~ )  where ~-a~7 denotes the configuration ~7 shifted by a, modulo 
the periodicity of A. We also require that the rates are left invariant under a 
reflection of both the configuration and the E-field. Lastly if we think of 
particles as positive charges and empty sites as negative charges, then it is 
physically natural to assume symmetry under charge conjugation. This 
means, in lattice gas language, that if we change ~Tx to 1 - r/x fo r  all x and 
E to - E  then the rates remain unchanged. 

There is a simple way to implement all these symmetries through 
setting 

c(x ,  y ,  77) = e~( flH(~l xy) - /3H(~1) - E .  (x  -y ) (T lx  - ~77)) (1.7) 

with some function ~ which, by detailed balance (1.5) has to satisfy 
e~(h) = co( -h)e  -h. In principle ~ could still depend on [E I and/3;  in fact 
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the rate of hopping is strongly temperature dependent. However, it seems 
reasonable to assume that this dependence enters q5 only multiplicatively 
and that otherwise ~ is independent of fl and E. Since a change in time 
scale does not affect the steady state, our prime interest here, we may as 
well assume that 4~ is independent of/3 and E. In particular we may adopt 
then one of the well-known choices for 0 at E = 0: for the Metropolis 
dynamics (v) c ) ( h ) = l  for h < 0  and O(h)=e  -h for h > 0  and for the 
Kawasaki dynamics (8) q~(h) = 1/(1 + eh). 

For simplicity we shall absorb the coupling constant into the inverse 
temperature and set flJ equal to 4ft. Then fl > 0 corresponds to an 
attractive interaction, fl < 0 to a repulsive interaction, and f l - - 0  to a 
noninteracting system. 

2. STATIONARY STATES 

We are interested in the steady nonequilibrium situation and investi- 
gate here general properties of stationary states. A stationary probability 
distribution Pe,N is defined by 

LEPE, N (7/) = 0 (2.1) 

Because the number N of particles is conserved we have a stationary 
distribution for each N = 0 . . . . .  [A[ and since the jump rates are nonde- 
generate these stationary distributions are unique. Expectations with re- 
spect to PE,N are denoted by ( �9 )e,o, where p = N/IA[. OO,N is the canonical 
equilibrium state. 

The theory of Markov chains ensures an exponentially fast approach 
to stationarity for finite A. However, because of the conservation law, the 
approach to stationarity is diffusive and therefore slow. The time needed to 
approach stationarity is estimated to be of the same order as that required 
for a random walk in A to reach its equilibrium. Thus the first nonzero 
eigenvalue of L E is expected to be of the order [A] -2. At low temperatures 
the approach to stationarity may be even slower. 

In  contrast to the thermal equilibrium situation, E = 0, PE,N is defined 
only through (2.1) and not known explicitly, except for the few cases 
mentioned below. We outline briefly our information about 0E,N: 

OE,N has to inherit the symmetries of the rates. Therefore PE,N is 
invariant under translations, i.e., 

OE,N (r/) = Pe,N (%rl) (2.2) 

If for some reflection we denote by R~/the reflected configuration r /and  by 
RE the correspondingly reflected field, then 

0~,N ('7) = 0R~,N (R~) (2.3) 
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If we denote by C7/ the configuration ~/ with particles and empty sites 
interchanged, then 

OE, N (rl) = O -  E, IA[- N ( Crl) (2.4) 

The symmetry of the probability distribution implies of course the corre- 
sponding symmetry of expectations. For example, (2.3) implies that the 
average current is odd in E, and together with (2.4) we conclude that the 
average current is even in the density around 0 = 1/2. 

We note that in general OE,N is not even in E. Higher-order correlations 
which cannot be related to each other by reflection distinguish between the 
states PE, N and p_ E,N" 

In a few cases (2.]) can be solved explicitly. For the particular choice 

cE(x,  y , ~ )  = e E'(x-y)(~x-'7>')/2 (2.5) 

which corresponds to/3 = 0 and q~(h) = e -h/2 in (1.7), the invariant distri- 
bution OE,N is obtained for arbitrary dimension by randomly placing N 
particles in A. The invariant distribution does not depend on E and 
corresponds to the equilibrium state at infinite temperature. Notice, how- 
ever, that merely setting/3 = 0 in (1.5) does not ensure that the stationary 
state is of that simple form. 

In one dimension there is a whole class of nontrivial jump rates, cf. 
Appendix 4, for which the canonical equilibrium state Z -  le-/~H(") with N 
particles is invariant under L e independently of the magnitude of E. 
Therefore all quantities of interest such as steady-state current, structure 
function, can be computed explicitly. In two or more dimensions, with the 
exception of (2.5), it is impossible to choose the jump rates in such a way 
that the thermal equilibrium state remains invariant as the E field is turned 
o n .  

All explicit solutions have the feature that the steady state is indepen- 
dent of E. Except for a few particles on a ring (9) we have no example with 
a nontrivial E dependence. 

3. STEADY STATE CURRENT, ZERO FIELD CONDUCTIVITY 

A quantity of basic physical interest is the average current in the 
steady state. We give first some theoretical background and describe in the 
following section our numerical results. 

Let us define the current functionjE(x, y) for the bond (x, y) by 

j E ( x ,  y ) (~ )  = ce (x ,  y,~)(TI:, - ~y) (3.1) 

This is the expected jump rate from x to y in a configuration ~. The average 
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current in the ruth coordinate direction is then given by 

jm( fl, E )  = <jE(X,X + em))E,o (3 "2) 

Here e m is the unit vector pointing along the positive m axis. By translation 
invariance the average does not depend on x and by reflection symmetry it 
is odd in E. 

The zero field conductivity is given by 

0 
%" = O-E, <jE(X'X + em))E'~ (3.3) 

Let us denote the differentiation in (3.3) by a prime. Then 

% ,  = ~']OO,N(~)C'o(X, x +em ,~)(~:, -- ~X+em) 

+ ~,P'O,N(~)Co(X' x +em ' ~ ) ( ~  -- ~x+em) (3.4) 

Here P0,N is the canonical equilibrium state. Note that we have two 
contributions: the first one results because of the E dependence of the 
current function and the second one because of the E dependence of the 
steady state. Using the detailed balance condition (1.5), cf. Appendix 1 for 
the computational details, these two terms correspond, respectively, to the 
static and dynamic part of the conductivity 

= 1 2 
amn iSmn(co(O, en ,B)(T/O-- e.) >o,0 

-- oI~ ( j o ( x , x  + e,)eL~yo(O, em)>O,o (3.5) 

The expectations and rates are the zero field equilibrium expectations and 
rates. L~ is the adjoint of L 0 defined in (1.2). By reflection symmetry the 
second contribution in (3.5) and therefore the conductivity tensor are 
diagonal. 

Using the same reasoning it can be shown that the frequency- 
dependent conductivity Omn(~ ) is also of the form (3.5) with the addition of 
the factor e iet under the time integral. Thus only the change in the steady 
state, which results from applying the electric field, leads to a frequency 
dependence of the conductivity. In particular, in all exactly soluble exam- 
ples mentioned above, the steady state does not depend on E and therefore 
Om,(~O ) is frequency independent. 

We will show in Section 6 that (3.5) is really the Kubo formula for the 
conductivity. It is not immediately obvious that this is in fact what (3.5) is 
(note in particular that the second term is negative), but this is indeed the 
case. Just as for Hamiltonian systems, the Kubo formula here expresses the 
transport coefficient as the space-time integral over the corresponding 
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current-current correlation function. It is the definition of the appropriate 
current function which requires some care in the stochastic case. 

Since by detailed balance (1.3) e L*t is symmetric with respect to the 
equilibrium weight Z-le-BU(n), and L~' is negative, we have the spectral 
representation 

fo ~ d t ~  x (jo(X, x + e,)eL~yo(0,em))o,o 

= 8m.fo dtfo ~ Iz(d;~)e = 6mnfo X-ll~(dX) (3.6) 

with some positive measure /~(dYt). This yields immediately the upper 
bound 

am, < �89 6m,(Co(O, e, ,  B)(n0 -- ~0.)2)0,o (3.7) 

As noticed by Halperin, (l~ (3.7) can be improved by Jensen's inequality to 
give 

am. <�89 e.) )O,p- /~ (d~k) ~(dX)X 

2 = �89 ,n)('O - -  e.) >O,p 

x + e.)LSjo(O, e .))o.  

(3.8) 
The Mori expansion (continued fraction expansion) (ll) goes beyond (3.8). 
One assumes that some moments of the spectral measure/t  (dX), i.e., 

, k. 
f0 ~ tz(dX)Xk= ~x (J~  + e")(L~ J~176176 (3.9) 

have been computed for k = 0, 1 , . . . ,  2M - 1. Then/~ (dX) is taken to be 
the sum of M delta functions fitted to yield the moments (3.9) and one 
evaluates on this basis f~/~ (dX)1/X. The Mori expansion is based on the 
assumption that the spectral distribution is dominated by a few frequencies. 
As will be discussed in Section 4, we checked this assumption for the 
one-dimensional model and found it not to be valid in this case. 

4. NUMERICAL RESULTS h STEADY STATE CURRENT, 
CONDUCTIVITY 

For our numerical study we used in one dimension a system of 200 
lattice sites with 100 particles and in two dimensions a 30 • 30 square 
lattice with 450 particles. Since we always kept the density equal to 1/2, we 
do not indicate the density dependence. We use standard Monte Carlo 
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procedure. A bond (x, y)  is randomly selected. If ~x = ~y a new bond is 
randomly selected. If ~x r ~y then in two dimensions if in the attempted 
exchange the energy difference including the work done by the electric 
field, A U, is negative the exchange is performed, and if A U is positive, then 
the exchange is performed with probability e-~ae.  This choice corresponds 
to setting ~(h) = 1 for h ~< 0 and ~(h) = e -h for h ) 0 in (1.7). In one 
dimension we modified somewhat the Metropolis dynamics in order to still 
have a nontrivial E dependence of the steady state even at fl = 0: we used 
the rates 

cE(x , x+l ;O , l ,O ,O)=l ,  @ ( x , x + l ; O , O , l , O ) = e  -E 

@(x ,x  + 1; 1, 1,0, 1) = 1, @(x,x  + 1; 1,0, 1, 1) = e -E  

ee(x ,x  + 1; 1, 1,0,0) = �89 
(4.1) 

ce(x,x  + 1; 0,0, 1, 1) -- �89 "4B) 

%(x ,x  + 1; 0, 1,0, 1) = �89 e4/~), 

cE(x,x + 1; 1,0, 1,0) = �89 4B) 

They are still of the form (1.7) but with ~ depending on E. 
The natural time scale is calibrated in Monte Carlo step per site (MCS) 

units. One MCS is 900 (200) attempted exchanges in two (one) dimensions. 
The time scale of the master equation (1.2) is in MCS units. The particles 
start in a random configuration and are then quenched to the desired 
temperature at E = 0. The system evolves for 15000 MCS to ensure a 
typical equilibrium configuration. This configuration is saved for the fol- 
lowing runs. Then the E field is gradually turned on. We allow for another 
15000 MCS to ensure a typical steady-state configuration. Quantities such 
as the current and correlation functions were calculated by averaging over 
25000 MCS in a given run. The data quoted are an average over at least six 
runs for d - -  1 (two to five runs for d = 2) at a given temperature and 
electric field. 

To obtain the steady-state current in the ruth direction one counts the 
total number, N+.m(t ), of jumps in the direction of % and the total 
number, N_,m(t), of jumps in the direction of - e  m during a time interval 
of length t. The current is then 

1 jm(fl, E)  = ~ [N+,m(t ) - X_m(t)] ,  t>> 1 (4.2) 

Also of interest is the number of exchanges per bond per unit time 
numerically defined by 

1 w•(13, E) = - ~  [U+.m(t)+U_m(t)l, t>> 1 (4.3) 
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This quantity is given by 

2 wm( fl, E)  = <cE(x,x +em ,~)(~x - X+em) )E,p (4.4) 

Wm(/9, E ) m e a s u r e s  how often an exchange is actually performed. In 
thermal equilibriumjm(fi, 0) = 0. If the E field points in the mth direction, 
then for large fields N+,m(t)>> N_m(t  ) and jm(fi, E)-~ Wm(/9, E ). This 
defines then the region of saturation. Any further increase in the E field no 
longer changes the steady state. In Fig. 1 we show an example with d = 1 
and fi = 0.6. Since E enters in the exponential, E = 5 means that jumps 
opposite to the field are suppressed by a factor 7 • 10 -3. Numerically this 
corresponds to E = oo. 

For given/3 the current increases first linearly in E and then reaches 
saturation as E ~  oo. For low temperatures and attractive interaction the 
current is strongly suppressed because of clustering. For repulsive interac- 
tion the current is also suppressed at low temperatures, but the phenome- 
non sets in more slowly. There is no symmetry under /9--->-/9. The 
maximum zero-field conductivity and maximum saturation current occur at 
small negative /9. We fit our data to the empirical guess a ( 1 -  e-bE), 

J(xlO -2) 
W(xlO -L) 

Fig. 1. 

5 

4 

i = 

3 ~- 

t 

1 

I I I ~ i I I I I I I I I I I 

O0 ~ 6 8 

E 

Current (solid line) and average exchange rate (dotted line) as a function of electric 
field in one dimension at fl = 0.6. 
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Fig. 2. (a) Scaling of the current in one dimension. Included are data for fl = -0 .4 ,  - 0 . 2 ,  
0.0, 0.2, 0.4, 0.6 and several values of electric field f rom zero to saturation. (b) Sealing of the 
current in two dimensions. The asterisks correspond to fi = 0.0, the full triangles to fi = 0.2, 
the full squares  to fl = 0.4, the crosses to /3  = - 0.2 and the full circles to/3 = - 0.4. 
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E >/O, such that the zero-field conductivity, (O/OEm)jm(fi, O ) = a(fl, O), 
and the saturation current are exact. This yields the scaling function 

Jsc( fl, E ) = j (  fl, oo)(1 - e -  eo(~,0)/j( 8, o~)) (4.5) 

Figures 2a and 2b show that the data fit reasonably well in one dimen- 
sion and in two dimensions at high temperatures. In all cases j ( f i ,  E )  

jsc( fl, E). 
Physically one would expect that a strong E field should override any 

kind of thermal dependence of the steady state. The detailed balance 
condition by itself does not imply such a behavior for the simple reason 
that it gives no connection between different (fl, E) values. But if we 
choose the rates to be of the form (1.7) with ~ independent of fl and E and 
with q~(h)~ const as h ~ - 0 %  then in one dimension as [ E [ ~  oe the rates 
are up to a multiplicative factor of the form (2.5) and therefore the steady 
state is the infinite temperature equilibrium state independently of the choice 
of /? .  This is why we choose rates (4.1) which still contain a temperature 
dependence even at E = o~. In two o r  more dimensions if the field is 
directed along one of the coordinate axes, but not otherwise, even rates of 
the form (1.7) still retain a nontrivial temperature dependence at E = oe 
because of the jumps orthogonal to the field which are still governed by the 
thermal rates. These facts show the strong dependence of the stationary 
states on the dynamics, which in a way reflects the rigidity of our model: 
particles can only be on lattice sites, the lattice is never distorted, jumps can 
take place only to nearest neighbors. 

From the steady-state current we obtain directly the zero-field conduc- 
tivity a( fi, 0) = a(0). We list our numerical values in Table I. 

According to (3.5) the zero-field conductivity has two contributions: a 
first one which is just one half of the average exchange rate, and a second 
one of dynamical origin. We follow the literature and denote the static 
contribution by a(oe). As a measure for the dynamical contribution to the 
conductivity one defines the correlation factor 

o(o) 
f c -  o(oe) (4.6) 

fc 4 1 by (3.7). By (4.2) and (4.3)fc is numerically obtained as 

f~=  lira 2 N+ (t) , N ,  (t) 
E-,0 E N+ (t)-+ N_ (t) (4.7) 

with t large in order to have small statistical fluctuations. In Table I, we list 
the correlation factor at different temperatures in one a n d  two dimensions, 
respectively. It is seen that the dynamical contribution to the zero-field 
conductivity is not negligible in general. In one dimension f~ < 1 even at 
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~(~) 
theory .(o) 

Table I ~ 

(a) 

a(0) 
upper bound fc fdt(j(t)j(O)) one-pole err0r(% ) D 

- 0 . 4  0.1808 0.181 0.148 0.161 0.82 
- 0.2 0.1920 0.192 0.165 0.175 0.84 

0.0 0.1875 0.188 0.174 0.179 0.93 
0.2 0.1288 0.129 0.111 0.118 0.86 
0.4 0.0812 0.081 0.067 0.073 0.83 
0.6 0.0475 0.047 0.038 0.043 0.81 

0.033 0.0196 41 1.318 
0.027 0.0168 38 1.146 
0.014 0.0083 41 0.696 
0.017 0.0108 36 0.298 
0.014 0.0083 41 0.146 
0.009 0.0047 48 0.057 

(b) 
o(~) o(0) L D 

- 0.4 0.037 0.029 0.78 0,504 
- 0.2 0.091 0.088 0.96 0.694 

0.0 0.125 0.125 1 0,500 
0.2 0.065 0.059 0.91 0.091 
0.4 0.024 0.019 0.79 0.002 

aPart (a) refers to one dimension, with columns (1) o(oo) the infinite frequency part of the 
conductivity, analytically computed from the first term of (3.5). (2) The same quantity numerically 
determined through the average exchange rate. (3) The static conductivity o(0). (4) The theoretical 
upper bound (3.8). (5)fc = o(0)/o(oo). (6) The time integral in (3.5). (7) The same quantity in the 
one-p01e approximation. (8) The relative error of the one-pole approximation. (9) The bulk 
diffusion coefficient determined from the Einstein relation D = a/X. Part (b) refers to the same 
quantities in two dimensions. 

fl = 0. This originates in our particular choice (4.1). If in (4.1) �89 
e +-4B) is replaced by min(1,e-+4B), then fc = 1 at/3 = 0. 

For one-dimensional models with arbitrary rates Singer (~2'13) com- 
puted analytically, with the aid of a computer algorithm, the first five 
moments of the spectral measure/~ (dX), cf. (3.9), i.e., 

~, (jo(X, x + 1, ~/)(L~)~j'0(0, 1, ~/))0,p (4.8) 
X 

for k = 0, 1 . . . . .  5. This yields then a theoretical value for the upper bound 
(3.8) which is listed in Table I, column 7. Singer evaluated the one-, two-, 
and three-pole approximation according to the Mori scheme. He found that 
the one-pole approximation differs only little from the three-pole one. From 
Table I, column 8, we see that the one-pole approximation is about 40% off 
over the whole temperature range, which indicates that the spectral distri- 
bution/~ (dX) is not sharply peaked. 

For one-dimensional models Zeyher (i4) and Singer (12) argue that the 
current-current correlation function has a long time tail, i.e., 

fo ~ i x (dX)e -X t~ t  - 3 (4.9) 
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for long times. In our computer simulation the current-current  correlation 
function decayed within 2MCS to the noise level over the whole tempera- 
ture range. This would seem to indicate that any long time tail--if present 
- -mus t  have a very small coefficient. 

As will be discussed in Section 6, the bulk diffusion coefficient D and 
the zero-field conductivity are related by the Einstein relation 

D = o/X (4.10) 

where X is the compressibility, 

X(O) = 2 (<~x~0)0,0- 02) (4.11) 
x 

We used series expansions for X(O) (15'16~ and list in Table I, columns 9 and 
13 our numerical values for the bulk diffusivity at density 1/2. 

. NUMERICAL RESULTS I1" STRUCTURE FUNCTION, NEAREST- 
NEIGHBOR CORRELATIONS, LONG-RANGE ORDER, AND 
PHASE TRANSITION 

A quantity of physical interest is the density-density correlation func- 
tion in the steady state. Its Fourier transform defines the zero-frequency 
structure function S(k) which is proportional to the differential scattering 
cross section. The small-k behavior of S(k) yields information about the 
decay of correlations in the steady state and on the possible occurrence of 
long-range order. 

We investigated numerically the structure function in one and two 
dimensions. The structure function is defined by 

1 (~) 2 eikX~]x[2 
= N 20E'N (5.1) 

k runs over the first Brillouin zone. In one dimension N = ]A]/2 and 
k = (2~r/200)n with n = 0, 1 . . . . .  199. In two dimensions k I = (2~r/30)n 1, 
k 2 = (27r/30)n 2 with nl,n 2 = 0 . . . . .  29. For a repulsive interaction it is 
more instructive to study the staggered structure function SB,E(k) which is 
obtained by shifting in SB, E(k ) each component of k by 7r. Numerically the 
steady-state average (5.1) is obtained by time averaging. 

Since the results depend on the dimension, we discuss one and two 
dimensions separately. 

d = 1, Attractive Interaction. For our choice of rates the E field acts 
like an increased ferromagnetic Coupling. This is reflected in the structure 
function S(k), cf. Fig. 3. The central peak increases with increasing field 
and the correlation length increases roughly by a factor of 4 from E = 0 to 
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Fig. 3. 
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The structure function S(k) where k = (2~r/200)n for several values of electric field in 

one dimension at fl = 0.6. 

E = oe. The "effective temperature," determined by fitting either to the 
equilibrium nearest-neighbor correlation or to the equilibrium correlation 
length, decreases roughly by a factor of �89 The observed phenomenon 
cannot be of general nature. If we were to choose rates satisfying (A.26), 
then the correlation length would be independent of E, and if we were to 
choose the Metropolis dynamics, then for large fields the rates would 
become independent of fl and the correlations would tend to zero as 
E ~ .  

d = 1, Repulsive Interact ion.  Over the temperature range considered 
the structure function is practically independent of E. 

d = 2, A t t rac t ive  Interact ion.  In two dimensions we oriented the field 
always along the negative y axis. According to Onsager the equilibrium 
(infinite) system has a phase transition at tic -~ 0.44. For/3 >/~c there is a 
liquid (high density) and a gas (low density) phase. As fi ~ / 3  c, at 0 = 1/2, 
the correlation length diverges and the structure function becomes singular 
at k -  0. This behavior is also reflected in the 30 • 30 system. Since the 
number of particles does not fluctuate, SB,E(k = 0) = 0 for all E and/3. The 
maximum of SB,0(k ) occurs at k = (2~r/30,0) and by symmetry also at 
k = (0,2~r/30). As we approach the region around 0.44 this maximum 
increases rapidly by an order of magnitude. 
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Fig. 4. The  s t ructure  funct ion  S(k )  at  the value  k x = 2 ~ / 3 0 ,  ky = 0, as a funct ion  of fl, for 
var ious  electr ic fields. The  crosses cor respond  to E = 0, the open circles to E = 0.75, and  the 
aster isks  to E = m.  

For finite E (always oriented along the negative y axis) we ob- 
serve first that the region of rapid increase in the maximum of S•,e(k ) 
occurs at smaller fl, cf. Fig. 4. At E = m the rapid increase occurs 
around fi = 0.32. Secondly the structure function becomes highly aniso- 
tropic. While S~,~(0, 27r/30) ~ 1 over the whole temperature range consid- 
ered, SB,~(2~r/30 , 0) increases from i to about 225. This suggests defining 
a critical temperature tic(E) depending on E, as the value for which 
SBc(E),E(2~r/30, 0) ------- 50 (the choice 50 being somewhat arbitrary of course). 
Studying typical configurations the following picture emerges: for fi 
< tic(E) we have a disordered configuration with some tendency to form 
clusters whereas for fl > tic(E) and E 4=0 typical configurations form 
striplike clusters oriented parallel to the field. In Fig. 5 we display some 
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Fig. 5. (a) Equilibrium configuration at fl = 0.40, E = 0. (b) A typical steady-state configura- 
tion, showing the format ion of fully occupied columns at fl = 0.40, and  saturation field. 
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(continued) (c) A typical steady-state configuration at /3  = 0.20 and  saturation field. 

T a b l e  II.  S o m e  V a l u e s  of the  S t r u c t u r e  F u n c t i o n  S(K) for: (a )  E = 0, K = 0.4, 
(b )  E = ~ ,  K = 0.4, a n d  (c )  E = ~ ,  K = 0.2 

r/1 0 1 2 3 4 5 

n 2 0 0.0 27.4 8.8 4.3 2.9 1.9 
1 33.8 16,2 8.3 4.3 3.1 2.1 
2 9.7 6.8 5.0 2.9 2.0 1.6 
3 4,5 4.4 2.9 2.2 1,6 1,4 
4 2.9 2.7 2.3 1.5 1.3 1.2 
5 1.9 1.5 1.4 1.4 1.3 0.9 

n 1 0 1 2 3 4 5 

(a) 

M 2 0 0.0 226.2 1.5 18.6 1.6 4.4 

1 0.7 0.7 1.0 0.9 1.2 1.1 
2 0.5 0.5 0.7 0.7 0.7 0.9 
3 0.4 0.4 0.5 0.5 0.6 0.7 
4 0.4 0.4 0.4 0.5 0.5 0,4 
5 0.4 0.4 0.3 0.5 0.5 0.5 

0 l 2 3 4 5 

(b) 

/'/2 0 0.0 3.8 3.4 3.4 2,4 2.2 
1 0.9 1.2 2.2 2.9 2.4 2,3 
3 1.0 1.2 1.7 2.0 1.8 2.2 
4 1.0 1.0 1.1 1,4 1.8 1.5 
5 0.7 0.9 0.9 1.1 1.2 1.4 

(e) 
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typical  conf igura t ions  cont ras t ing  the cases fl </3c(oo ) wi th /3  >/3c(oo)  and  
E --- 0 with E = oo for ]3 > flc(oo). As a more  quant i ta t ive  measure  we also 
show the s t ructure  funct ion  for small  k in Tab le  II .  

To  give an  exp lana t ion  which is at  least  qual i ta t ive  for the occur rence  
of strip conf igura t ions  it is  useful  to cons ider  very low temperatures .  If 
E - - 0 ,  then j u m p s  which decrease  the n u m b e r  of neares t  ne ighbors  are  
essential ly fo rb idden .  T h e  g round  state is a d rop le t  which has  the smallest  
surface, and  at  low tempera tu res  the system tries to minimize  surface 
energy. On  the other  h a n d  if the work  done  by  the field is larger  than  the 
b ind ing  energy,  say E = oo, then j u m p s  in the d i rec t ion  of the field still 

10 

8 

6 

4- 

2 

0 
0 1 2 3 4- 5 6 7 8 9 1 0 1 1 1 2 1 5 1 4 1 5  
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0 1 2 3 4- 5 6 7 8 9 1 0 1 1 1 2 1 5 1 4 . 1 5  

Fig. 6. Histograms showing the average number of columns (vertical axis) with a given 
number of occupied sites. Because of symmetry, columns with m occupied sites and (30 - m) 
unoccupied sites are considered equivalent to columns with m unoccupied sites and (30 - m) 
occupied sites. Because such symmetry does not exist for m = 15, contributions for m = 15 
were multiplied by two in compiling the histogram, (a) Histogram from fl = 0.20 and 
saturation field. (b) Histogram for fl = 0.40 and saturation field. 
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have rate one independently of the number of nearest neighbors, provided 
the jump is not blocked. Therefore the most slowly changing configurations 
are strips parallel to the field. In analogy to thermal equilibrium we would 
expect that the transition from disordered to strip configurations becomes 
sharp for the infinite system. 

We may learn something about the phase diagram in the/3, 0 plane for 
large E ( E -  oc) by looking at the densities of the "liquid" and "gas" 
phases as they appear in typical configurations at fl > flc(oe). Counting the 
number in each column we can make a histogram whose peaks, for very 
large systems, should occur at Ov and &, respectively. By the symmetries 
(2.3)-(2.4), Ot-Or = m*, where m* is the spontaneous magnetization in 
spin language. Such histograms are shown in Fig. 6. To take account of the 
finite (small) size of our system we estimate m* by computing the difference 
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Fig. 7. Order parameter vs. 1~ft. The solid circles represent our Monte Carlo data in 
maximum electric field. The open squares represent the exact zero electric field magnetization 
and the open circles represent Landau's Monto Carlo results for a simulation of the two- 
dimensional Ising model on a 30 • 30 lattice. 
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between the average of the magnetization squared in the vertical columns 
and horizontal rows and dividing the result by L 2 = 900. (This would equal 
one when the strip formation is perfect and zero when the system is 
isotropic.) The m*(T) curve so obtained, for E = ~ ,  is shown in Fig. 7. 

Also shown in Fig. 7 is the exact infinite volume equilibrium, E = 0, 
m*(T) curve as well as some m*(T) obtained (17) from computer simula- 
tions on a 30 • 30 lattice at E = 0. It appears that the nonequilibrium 
m*(T) is less steep than the equilibrium one. If this is really the case it 
would indicate a critical magnetization exponent larger than the equilib- 
rium 1/8. This would then be similar to what is found for the phase 
separation of a binary fluid under a shear flow. (18) 

The development of two phases at /3 =/3c is accompanied at E --- 0 by 
a logarithmic singularity in the specific heat as/3 ~ tic. To find out whether 
there is a similar behavior in the presence of the field we investigated the 
specific heat at E = oe and the saturation current as a function of/3. The 
specific heat, cf. Fig. 8, has a maximum around 0.37 which coincides 
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Fig. 8. The specific heat in saturation field. Values were calculated by differentiating a 
polynomial fit of the energy. 
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roughly with the critical temperature obtained from the structure function. 
Compared with the thermal equilibrium, E = 0, specific heat, the maximum 
is not as pronounced. This may also be due to the nature of the singularity 
in the thermodynamic limit being changed by the field. 

We have also looked for any apparent nonsmooth behavior of the 
current at tic(E). We found that the saturation current seems to have a 
break around fl = 0.3. In Fig. 9 we plot the saturation current with respect 
to ft. It seems possible that in the thermodynamic limit the slope develops a 
jump discontinuity. 

We also investigated the truncated nearest-neighbor correlations in the 
vertical and horizontal direction; cf. Fig. 10. Since above tic(E) the column 
density typically differs from 1/2, cf. Fig. 6, we truncate the vertical 
nearest-neighbor correlation in each column separately by the column 

Fig. 9. 
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Fig. 10. Truncated vertical nearest-neighbor correlation functions (VNN) and horizontal 
nearest-neighbor correlation functions (HNN). The open (closed) circles correspond to VNN 
for /? = 0.4 (0.2). The open(closed) squares correspond to HNN for fl = 0.4 (0.2). The 
difference between VNN and HNN at E = 0 is an indication of statistical fluctuation. 

density squared. For consistency we use the same truncation in all other 
cases too. We see that the correlations become anisotropic for E 4 = 0. The 
qualitative behavior of the nearest-neighbor correlations may be explained 
as resulting from two partially opposing tendencies of the field: (i) to 
produce strips and thereby to increase correlations and (ii) to decrease the 
correlations within each column (recall that in one dimension with Metrop- 
olis dynamics the E = oo state is completely random). At small B the 
ordering tendency dominates and the correlations increase with increasing 
E. At large B the truncated correlations still increase for s~al l  E whereas at 
the critical field strength, E --- 1 .5for  fi -- 0.4, strips are formed and the 
randomization tendency within each column dominates. More study is 
clearly required for a full understanding of the correlations in this nonequi- 
librium steady state. 

d = 2, Repulsive Interaction. For E = 0 at sufficiently low tempera- 
tures the particles try to arrange themselves in a chessboard configuration. 
For large field the particles jump with rate one to the unoccupied site ahead 
of them in the - y  direction. Therefore the field breaks the antiferro- 
magnetic structure. This mechanism is supported numerically. The average 
current is larger than the one for the ferromagnetic coupling of the same 
magnitude; see Ref. 4. The nearest-neighbor correlations increase with 
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increasing field, i.e., particles become less negatively correlated. The hori- 
zontal nearest-neighbor correlation is always less negative than the vertical 
one. The staggered structure function is only slightly anisotropic. Its maxi- 
mum, still at either k = (2~r/30,0) or k = (0,2Tr/30) is substantially de- 
creased when going from E = 0 to E = m. 

6. KUBO'S FORMULA AND BULK DIFFUSIVITY 

Kubo's formula relates transport coefficients to the space-time integral 
over the corresponding current-current  correlation function in equilibrium. 
First we discuss how this is defined for stochastic �9 lattice gases. We then 
prove the formula for ~(0), the zero field conductivity, and show that ~(0) 
is related to the bulk diffusivity for E = 0 by an Einstein relation. We then 
comment on various methods to determine the latter numerically. We close 
by explaining the corresponding situation for nonzero E. 

We define the integrated current through the bond (x, y)  by 

f ( X ,  y; dt) = number of particles which cross the 

�9 bond from x to y minus number of particles 

which cross the bond from y to x during the 

time interval I t, t + dt 1 

f ( x ,  y;  dt)is defined for every "history" (i.e., stochastic trajectory) of the 
particle system. The density r162  y;  t) of the integrated current, defined 
by ~F(x, y; t)dt = ~ ( x ,  y; dt), is the actual current through the bond 
(x, y). It has a 6 function with weight 1 at times when a particle jumps 
from x to y and a 8 function with weight - 1  at times when a particle 
jumps from y to x. The actual current should not b e  confused with the 
current function (3.1): jE(x, y)(71) is the average current when the part icle 
configuration is 7. For an arbitrary initial probability distribution and an 
aribitrary dynamics L the average current at time t is given by the average 
of f -  over trajectories followed by an average over configurations. In 
particular 

(dF(x ,  y; dt)) = (eL*~(x, y ) )d t  (6.1) 

In thermal equilibrium the average current is zero, 

( f (x, y; dt))o, o = (jo(x, Y))o,o dt = 0 (6.2) 

The current-current  correlation function in equilibrium is then defined by 

( f (x ,x  + em;dt) f (y, y + e,;ds)) (6.3) 

By translation invariance it depends only on x - y  modulo the periodicity 
of A and by time invariance only on t - s. In order to compute (6.3) we 
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replace the integrated current by its short time approximation 

~e~(x, y;  It, t +  I-])= Ox,t(1 - ~Ty,t)(1 , 7~x,t+,r)~y,t+, r 

-- ( 1 ,  ~/x,,)~y,,~x,,+~(1 -- ~/y,,+~) (6.4) 

for small ~-. Here ~x,t = 1, if site x is occupied at time t, and ~lx,t = 0 if site x 
is empty at time t. We insert the short time approximation in (6.3) with the 
short time intervals [0, ds] and [t + ds, t + ds + dr]. We have to compute 
then an expectation depending on four different times. At this stage we 
exploit the Markov property of the stochastic time evolution. Using de- 
tailed balance the average equals then 

L~t. - d s d t ( j o ( x , x  + em)e ] (y ,  y + e~)) (6.5) 

To obtain the equal time contribution we set in (6.3) both time intervals 
equal to [0,z] and use the short time approximation. For small �9 the 
average equals then 

'l"~xy~mn(CO(X , X -[- e, ,  ~l)(~lx - 2 T/~ + e.) >0,0 (6.6) 
Therefore 

( ~ ( x , x  + %;dt)  f ~ ( y ,  y + e~;ds))o, o 

= 8 ( t -  s)ata SxySmn(C(O, en ,n)(no- nJ)o,. 
- d t d s ( j o ( x , x  + em)erSIt-S~/o(y, y + e,))o,o (6.7) 

Comparing with (3.5) we obtain for the conductivity 

Omn = 1 f~176 ~x ( f ( X , X  + em;dt)6/C(O, en;O))o, o (6.8) 

The zero-field conductivity equals the space-time integral over the equilib- 
rium current-current correlation function. This is Kubo's famous result 
derived in another context. (~9) The integral over an autocorrelation func- 
tion is non-negative and therefore o >/0 which is not immediately obvious 
from (3.5). 

In the infinite volume limit the conductivity is still defined by (6.8) 
with the average now over the infinite volume equilibrium state at inverse 
temperature /3 and density 0. If the equilibrium state has good cluster 
properties, then the integrand of (6.8) converges in the limit A ~ Z  a, 
N-->oo, N/IA]---> O. However, we have no proof that the finite volume 
conductivity converges in the same limit to the infinite volume one. 

Bulk Diffusion 

We proceed now to the connection between the zero-field conductivity 
and the bulk diffusivity in thermal equilibrium. The bulk diffusivity is 
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unambiguously defined only for the infinitely extended system. We con- 
sider the truncated density-density correlation function 

(~/x,t*/o,o>o,o - O 2 (6.9) 
in equilibrium at given inverse temperature fi and density p. One expects 
that for large x and t the density-density correlation function behaves 
diffusively as 

(T~x,tTlO,O>O, ~ _ p2 ~_ X(p)eAt (x, 0) (6.10) 

where eAt(q,O) is the transition probability for a Brownian particle with 
diffusion matrix D(p). In other words eAt(q, 0) is the fundamental solution 
of the diffusion equation 

d 

0 D n m ( p ) ~ f ( q , t  ) (6~11) O--i f (q , t )= ~ 
m,n = 1 

By definition D(p) is the bulk diffusion coefficient at density p. X(P) is 
determined by summing both sides of (6.10) over x. Since fdq eAt(q, O) = 1 
by conservation of mass, we obtain 

X(P) = ~ ((7/zT/o>o,o - P 2) (6.12) 
x 

i.e., X(P) is the static compressibility. By the assumed reflection symmetry 
D(p) is diagonal. Therefore given (6.10) it is reasonable to adopt the 
following definition of the bulk diffusion coefficient: 

2 Dnn (p) = lim 1 1 2 (xn) ((~/~,t~/0,0>0,~ - O 2) (6.13) 
, - , ~  2 x ( o )  t x 

For high temperature, us ingthe  conservation of mass and the good 
cluster properties of the equilibrium state, we prove in Appendix 2 that the 
limit (6.13) exists and that 

l f f  Dmn(P) - f~(p) 2 (~f~(x,x + em;d t ) f  (O,e~; 0)>0, ~ (6.14) 
~ x ~Zd 

Comparing with (6.8) we obtain the Einstein relation 

1 
Dmn(P ) = - ~ O m n  (6.15) 

with Omn the infinite volume conductivity. By measuring the conductivity 
one can therefore determine the bulk diffusivity. 

There have been various numerical investigations of the bulk diffusiv- 
ity. We want to briefly compare here the various methods. In principle 
there are at least five different ways for determining the bulk diffusion 
constant. In three of them one uses the relationship (6.15). Therefore with 
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these methods one has to determine the zero-field conductivity and, inde- 
pendently, the static compressibility, which can be done by equilibrium 
techniques. 

(1) One measures the zero field conductivity by measuring the 
steady-state current for small field. This is the method used here. In 
practice just a single value of the field suffices. Since the current is an 
average over all bonds, statistical fluctuations are rather small. 

(2) One determines numerically the total current-current  correlation 
function in thermal equilibrium as 

IAIi 2 f (x,~ + em; [O,t]) f (y, y + e~; [O, tl) (6.16) 
x E A 0,N 

For large times it has to tend to the constant 2 %, .  In this way one 
evaluates numerically directly the integral (6.14). This method looks rather 
promising to us. But it has not been employed systematically yet. Sadiq (2~ 
used this method in the case of a two-dimensional system with two 
conserved quantities near the critical point. The results are modest, in the 
sense that there are large statistical fluctuations. In our opinion, the reason 
lies more in the ambitious goal pursued in Ref. 20 than in the inadequacy 
of the method. 

(3) Murch and Thorn (21'22) measured the conductivity for a simple 
cubic and a two-dimensional honeycomb lattice with both repulsive and 
attractive interactions. They use a time-dependent method and compute the 
average drift of an initially sharp mass distribution. The error ba rs  are 
rather large. It is not clear to us how the precise density dependence of the 
bulk diffusivity can be accessed by this method. 

(4) One prepares the system initially in a slowly, sinusoidally varying 
density. This density decays then to uniform equilibrium and the rate of 
decay is a measure of the bulk diffusion coefficient. Kutner, Binder, and 
Kehr (23) used this method in the case of a three-dimensional system on a 
simple cubic lattice with attractive interactions. They cover the whole 
density range at various temperatures. To our knowledge, this is the most 
systematic measurement of a bulk diffusivity. It is not so clear to us how 
well this method can handle statistical errors and finite wavelength and 
frequency effects. 

(5) One establishes the system in a nonequilibrium steady state by 
imposing different densities at the boundaries. This is achieved by creation 
and destruction of particles at the boundary. In the steady state the mass 
current is proportional to the bulk diffusivity for small density difference. 
Murch (24) used this method for a three-dimensional simple cubic lattice 
with attractive and repulsive interactions. Since the current is an average 
over all bonds, statistical errors are presumably small. However, finite size 
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effects and nonlinear dependence on the density difference may be impor- 
tant. 

Certainly, all five methods work in principle: which one of the meth- 
ods gives the must reliable numerical value for the bulk diffusivity still 
waits for clarification. In our opinion, stationary methods are closest to the 
theoretical definition. 

So far we have focused on the zero-field conductivity and diffusivity. 
The finite field diffusivity is still given by the space-time integral over the 
current-current  correlation function. Since to our knowledge this has not 
been given in the literature, we explain the formal derivation in Appendix 
3. There canno t  be any simple relationship like (6.15) between diffusivity 
and conductivity at nonzero field. To see this we define the rates 

~-E(x, y,~l) = ~(E)ce(x, y, rl) (6.17) 

with o~(E) > 0 and independent of x,y, and ~/and c e satisfying the detailed 
balance condition (1.5). ?E then also satisfies the detailed balance condi- 
tion. Since (6.17)just amounts to a change of the time scale, the stationary 
states of the dynamics with rates YE are the same as those with c e. 
Therefore 

~ ( / 3 , E )  ~ (~ (0 ,  en))e,o = a(E)j,(B,E) (6.18) 

and 

6mn(~,E)=[ ~e~(E)l jm(t~,E)+ ~(E)omn(fl, E ) (6.19) 

By an appropriate choice of a ( E )  we can produce essentially any current-  
field characteristic we want. In particular, the finite field conductivity can 
be negative, which is not possible for the bulk diffusivity. 

Of course, we can still follow the computation in Appendix 1 and 
express the conductivity as 

= ( ~ 5-i2. jE(o, em) / 

7. ENTROPY PRODUCTION 

In linear irreversible thermodynamics the steady state can be obtained 
as the minimum of the entropy production. (25~ We take this as our 
motivation to investigate here whether a corresponding principle could be 
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o(0)= -k 2 
x ,y  

I~- yt = 1 

valid on the level of stochastic particle dynamics. We comment at the end 
of this section on the entropy production for a classical particle system in 
contact with heat reservoirs. 

We define the entropy production 0(0) in the state O as 

0(0) = change in system entropy + flow of entropy 

from the system to the surroundings 

The change in the system entropy in the state O is 

_ d_dt~ Ot (n ) l~  ,,=o (7.1) 

with Ot governed by the master equation (1.2). The entropy flow to the 
surroundings has two contributions: (a) there is a change in the energy of 
the system when a transition changes the number of nearest neighbors. The 
corresponding entropy flow is 

- f 12  O(~)L*H(~) (7.2) 
~7 

(b) There is work done by the electric field which is absorbed by the 
surroundings as heat at the temperature 3 -  ~. This is equal to E times the 
average current 

2 (7.3) 
x,y  

Ix-yl=l 

Remember that E corresponds to BE. Therefore, adding (7.1) to (7.3), we 
obtain 

~2 {Ice(  x, y ,  ~XY )p('O ~y ) - c e ( x  , Y,~)p(~) llog 0(~) 

+ o(n)cE(x,  y , n ) B ( n ( n  xy) - 

+ p(B)CE(X, y , ~ ) E ' ( x  - Y ) ( ~ x  - ~ty)} (7.4) 

Note that the first two terms are the time derivative of the "free energy," 
E - TS,  whereas the third term cannot be written as a time derivative. 

Let v ( p ) =  e*n(n)0(~). Then using the detailed balance condition (1.5) 
we can rewrite (7.4) as 

x , y  v/ 

I~-y1=1 

• [log v (~) - log e E. (x-y)(nx- ny)v (~ xy) ] (7.5) 
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The function f ( x ,  y)  = (x - y)(log x - log y) is non-negative for x, y > 0 
and we conclude that 

o(p) ) 0 (7.6) 

In fact, for E # O ,  o (p )>  0 because o(p)= 0 if and only if v(~/)= 
ee'(x-Y)(nx-~Au(~lxY), which cannot be satisfied because of the periodic 
boundary conditions. Since for 0 < h < 1, f((1 - h)Xl, (1 -- h)y 0 + f(Xx2, 
bY2) < (1 -- h)f(xp yt)  + Xf(x2, Y2) with strict inequality if (Xl, Yl) =/= a(x2, 
Y2), o is strictly convex, i.e., 

o ( ( 1 -  h)01 + hO2) <(1 -- h)o(01) + ho(p2) (7.7) 

for P] v a P2. Therefore o has a unique minimum 10E, rnin, the state of minimal 
entropy production at given field E. 

How is OE.min linked to the steady state PE, N defined by (2.1)? From 
simple examples we learn that PE,min 4: PE,N in general. However to first 
order in E they agree, i.e., 

PE,N E O-- ~ PE,min E=O (7.8) 

We computed already the left-hand side of (7.8), see (3.3)-(3.5), as 

--(fo~ eC~/o(X,X+ e ~ ) ) Z - l e  -/~H (7.9) 

To obtain the right-hand side we take the variational derivative of o at 
UE,mi . .  This gives 

% (x, y,  *1) [ 1 - e e. (~-y)(nx- .y)PE,min(71 xy ) PE,min('q) - 1  x.y 
Ix-y[ = 1 

+ logt'E, min(r/) --log %,mid(r/xy) -- E ' ( x  -Y)QI~  - By)] 

= o ( 7 . 1 o )  

We solve (7.10) to first order in E and obtain 

E Co(X'Y"q)( 0 IPE,min(~X"V)-- PE, min(TI)l) E_O x,y 
Ix-yl = l 

= ~ C o ( X , X  + e. , n ) ( n x  - nx+eo) x 
(7.11) 

in agreement with (7.8) and (7.9). 
We remark that the agreement between steady state and state of 

minimal entropy production to linear order in E relies in an essential way 
on the stochastic nature of the dynamics. If we consider a system of 
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classical particles in contact with stochastic heat reservoirs (26~ then even to 
linear order in the temperature difference the steady state does not agree 
with the state of minimal entropy production. The reason is that, since the 
free energy is invariant under the Hamiltonian time evolution, the entropy 
production for a given measure is independent of the Hamiltonian. On the 
other hand the first-order correction to the steady state depends on the 
particular form of the Hamiltonian.  

8. THE INFINITE-VOLUME LIMIT 

Physically, one is typically interested in the bulk properties of the 
system. Therfore, as in thermal equilibrium, surface effects should be 
eliminated by taking the thermodynamic limit where the size of the system 
tends to infinity keeping the density fixed. We choose then a sequence Aj of 
periodic boxes, Aj ~ Z d asj--> o0, and a sequence Nj of number of particles 
such that limj__,o~Nj/[Aj[ = O and study the limit of the correlation functions 

lim ( ~A~x ) =--f Ize,o(d~) I-[ ~x (8.1) 
j--+o~ x E, NjIAj[  x ~ A  

where A is an arbitrary finite set of sites. By compactness the limit taken 
along suitable subsequences exists and defines the infinite volume state/ZE, p. 
By construction/~e,0 is stationary and translation invariant. 

By just using compactness one loses any specific information about the 
infinite volume states. BUt we conjecture that they have the following 
properties: For sufficiently small fl for any density O and field E the limit 
state i~E,o should cluster in the sense that truncated correlation functions 
decay at infinity. On the other hand for given E and B > tic(E) one should 
have two density ranges 0 < O < Og and 0l < P < 1 such that for every p 
within that range/~E,p has good clustering whereas for Og < P < Pt the limit 
(8,1) will be a suitable superposition of the states /~e,og and /~E,p," In 
particular the limit correlation functions in (8.1) do not cluster and the 
system exhibits long-range order. As already noted the segregation curve 
has to be symmetric around p = 1/2. A typical configuration for ~E,o, would 
have an infinite cluster of particles with holes stretched along the field 
direction. If in this configuration we interchange particles and empty sites, 
then we obtain a typical configuration for/~e,p~. 

Another approach to the infinite volume limit is to study directly the 
stationary states of the infinite volume dynamics. We consider the space f~ 
of all configurations on ;ya, i.e., ~2 = {0, 1} ~. It has been shown (25~ that the 
evoluation equation 

d d--7 (LU,)(,7) (8.2) 
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with 

1 (L*f)(~l) = ~ ~ ce(x ,y ,  v l )[ f (r f fY)- fQ/)]  (8.3) 
x,y@Z d 

acting on local functions has a unique solution e Lit on C(f0, the space of 
bounded and continuous functions on ~2. The kernel el"tt(,lld~l' ) defines the 
transition probability for the infinite system. Invariant probability measures 
are characterized by 

fa ~ (d~) ( r~ f ) (~ )  = O. 

for all local functions f. The problem is then to classify all invariant states 
for given parameters E and ft. One class of stationary states is provided by 
the construction (8.1). These steady states are translation invariant and 
carry a current. The dynamics in these states is not reversible. Another class 
of invariant states is obtained by the infinite volume of the Gibbs state 
(1.6). Their density tends to unity in the direction of the field and to zero 
opposite to the direction of the field. In these states the dynamics is 
reversible. If we restrict out attention to steady states which are translation 
invariant, then we would hope that they coincide exactly with the ones 
obtained through the limit (8.1). 
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APPENDIX 1 

We fill in the details in deriving (3.5). Differentiating the detailed 
balance condition (1.5) at E, = 0 one obtains 

C~)(X, X 4" em, n) 

= Co(X X 4" e m ,'rlxX+em)e -fl(H(rlxx+em)-H(~l)) 

+Co(X, x + em,n)e_/~(.(~ . . . .  m)-~/(n))(*/x - -  T]X+em)•mn (A.I) 

Inserting (A.1) in the first term of (3.4) yields 

�89 + e,)Qlx - ~X+en)2)~mn (a.2) 

Differentiating the invariance condition at E, = 0 one obtains 

LP'o, N 4" L'PO, N = 0 (A.3)  
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By (A.1) 

L'OO,N = -- j ( x , x  + era) O0,u (1.4) 

Using again detailed balance the first-order correction is then 

p'O,N = - - [ f o ~ d t ~ x e L * ] ( x , x + e m ) ] P O ,  N (1.5) 

Inserting in the second term of (3.4) gives the desired result. 

APPENDIX 2 

We prove the existence of the limit (6.13) under the condition of 
sufficiently high temperatures. Our argument does not exclude the physi- 
cally absurd possibility D (p) = 0. In the following manipulations we invoke 
the following lemma. 

Lemma. Let f and g be local functions and let ~-x denote the shift by 
x E 7/a. If p and fi satisfy the high-temperature condition + 2dl fi] 
< ~r/4 with/~(p) the chemical potential as a function of P, then 

I<g~-xeL*SC>p,BI < cle-C2kxl (A.6) 

with positive constants c 1, c 2 depending on g, f, and t. Here ( �9 >p,r denotes 
the average over the infinite volume equilibrium state at inverse tempera- 
ture/3 and density O- 

Proof .  Since f is local, the existence of the dynamics implies that 
eL*~f is quasilocal in the sense that, for fixed t, it depends only exponen- 
tially little on the occupation variables far out. The explicit dependence 
follows from estimates similar to those of Holley and Stroock. (28'29) Our 
high-temperature condition guarantees exponential clustering. (29'3~ Both 
results together imply (A.6). �9 

The constant c I grows exponentially with t. (A.6) is therefore useful 
only for finite t. 

From the definition of the integrated current we deduce the conserva- 
tion law 

d 

= 2 ( f ( x -  e.,x; [0,,])- f(x,  + em;[0,,l) } 
m = l  

(A.7) 

for every history. Because of the bound (A.6) the following identities are 
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valid: 

it - 02) 

1 1 
- 2t ~ (x~)2((rlx'' - r/~'~176 - rl~176176 t- ~x (x")2((rl~r/~ - p2) 

= It ~x ( f ' ( x , x  + e.; [O, t ] ) f - (O,  en; [O,t]))o 3 

+ It ~x (<r/~r/~ - P2) (A.8) 

We used here detailed balance and partially integrated twice. As t --~ oe the 
second term vanishes. For the first term we use (6.7). Then 

(A.8) = (c(O,e n ,71)(~o 2 - -  "Qe.) )p , f l  

with 

- ~ s163 s'l) + O(1/t)  (A.9) 

h(t) = E (x,x + en)eL~ltJ(O, en))o,p 
x 

The integrand of the second term is positive. Therefore its limit as t-~ oc 
exists and is either finite or infinite. If it would be infinite, then the sum of 
the first two terms would be negative, which contradicts the positivity of the 
total current-current  correlation function. We conclude then that the limit 
(6.13) exists and is given by (6.14). 

The argument given yields no information about the decay of h(t). In 
principle the two terms of (3.5) could cancel each other in the limit t ~ oe. 

APPENDIX 3 

We want to show here that the bulk diffusivity at finite E is still given 
by the space-time integral over the truncated current-current  correlation 
function. We have too little control over the dynamics and  over the 
stationary state to make our argument rigorous. We assume the existence of 
an infinite volume state ( . ) 0  with density P which is stationary in time, 
invariant under spatial translation, and has some reasonable clustering in 
space and time. The detailed balance condition (1.5) is not used. In the case 
of a constant electric field ~ )p = ( )E,o" 
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The basic assumption is that the truncated density-density correlation 
function, 

(nx,tno,o)p - 0 2 (A. 10) 

behaves for large x and t as the fundamental  solution of the linearized 
macroscopic equation 

d 

~--to(q't) = --m~=l ( ~ Jm(O)) O~mP(q't) 

d 
+ 2 Dmn(O)-~q P(q't) (A.11) 

m,n ~ 1 

Here, by definition, D(p ) is the bulk diffusion matrix and j(o) is the 
stationary current, i.e., jm(O)= (j(O, em))o" This allows us to identify the 
macroscopic quantities with microscopic expressions. The constant drift 
term appears because we no longer assume reversibility. 

The first moment  of (A.10) should grow linearly in t and identify then 
the correct driftl The normalization is 

x 

Using the conservation law we obtain 

1 ~xXm(<~x,t~O,O)p_ ]92) 
x(o) 

-- 1 ~axXm(<(~x,t __ ,Ox,O),l~O,O)p _[.. (~x~O~p x(o) 
_ 1 ( d 

X(P) ~x Xm \ n=12 ( ( f ( x  - -  en,X ; [0, t]) 

Let 

_ 

- - f ( x , x  + en; [O,t]))Bo,0)p) 

_ 1 ~0 tds~x[(~xeL*~(O,em))O -- (710)p(j(O, em))p ] 
x(p) 

= t x ~  ~x(<~xj(O'em)~p--<'O~o<J(O'em)~p) 

( ' )p(x) = Z(?0-  ' ( "exp(~-~x ~x)) ~ 

(A.12) 

(A.13) 

(A.14) 
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Then 

((Bxj( O, em))p - (T/o)o(j(O , em))o) 
x 

- 8~ (J(O'em))o(X)X=O=[ -~p Jm(O) J aO8(~ x=o=X(O)-~O jm(O) 

which shows that 

1 ~xXm((~lx,,~lO,O)o_ p2)----t + jm(P) x(o) 
as claimed above. 

To identify the bulk diffusion matrix we define 
d 

2;  * amanDm.(O) 
m,n = 1 

1 [ X ~ 0 )  amXm2((~x't~O'O)P = lim 2-t • ~ -02) 
t---~ oo x r n = l  

a  ot  x  OO>o- 

We follow the same steps as in (A.8) and obtain 
d 2 1 1 

2t X(P) ~x m~=l amxm (('qx't~O'O)o--P2) 
d 

= ~. ~. a * a . ( ( / ( x , x  + em; [0, t])J-(0,  e.; [0, t]))p 
X m g n = |  

(A.15) 

(A.16) 

- t(j(O, em))pt(j(O, e,))p) (A.17) 

The correct spatial truncation appears through the partial integration. To 
compute the current-current correlation function we use again the short- 
time approximation (6.4) and follow the argument given there. Then 

(r162 em; ds) f (x,x + e,; dt)) o 

= 6 ( t -  s)dtds6m.6xo(c(O,e.)(~ o - ~eo)2)o 

+dtds(j(O, em)OoemeL*lt-~)(x,x + e.))o (A.18) 

Here axy interchanges the occupations at x and y, i.e., (OxJ)(n)= f(~xy). 
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Note that in thermal equilibrium detailed balance implies O~ej(O, era) 
=--j(O, em) with the definition (~ j (O ,  em)f) o = (j(O, em)8Oe~f)o for all 
local functions f. Inserting (A. 18) in (A. 17) we obtain 

d 

E a*anDmn(P) 
m , n  = 1 

d 
1 

2x(o) ,,=~E la, ,12(c(O, en ) (~#o -  7~e.)2>0 

" ( ;os + E am* a n lim ~1 tds tds, 
m a l l  ~ I t - - ) ' o o  �9 

x[ x@o) ~(<j(0 ' L.~,-,,~. + em)OOem e ' j (x ,x  en)>. 

- (j(O, em))o(j(O, e.))o ) 

We have to check that (A.19) contains the correct truncation in time. 
For this we have to study 

lirn X@O) ~ (QrxgeL*tf).- <g)o<f)") (a.20) 

where g = Otemj(O, era) and f = j (0 ,  e,). We write (A.20) as 

1 0 Z(X)-,((EL*tf)exp(X~%g)) lim X(O) O)t ,x=o 

and interchange the differentiation and the limit. Then 

(A.20) 

t ~  ~. x S l p l l = O  = 

where < �9 )o(x) is the stationary state with density p(X) obtained in the limit 
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as t --> oc of Z(X)- 1(. exp(XY~ xrxg))~. Therefore 

(1.20) = X@0)( + ( f )o )ap (X)  
X=0 

(1.22) 
where the same argument as in (A.15) is used. Inserting g = ~emj(0, %) and 
f=j(O,e,3 and using (1.15) and 

2 ((~xO~emJ( O' %))0 - (~lo)o(J( O, %))0) 
X 

-- ~,, ( (j(O, em)~Oemrlx)o - (71o)o(j(O, %))o) 
X 

= ~x ((T/xj(0' era))~ -- (310)~ era))~ (1.23) 

we find that the truncation is indeed as given in (A. 19). 
Assuming the integrable decay of the total current correlation function 

1 2 Dm"(P) - 2X(O) (c(0, e , )Qlo-  neo) )oSm, 

+ f--2 d, { X-~ ~ [(j(O'em)o~ e~))~ 

- ( j ( O ,  em))o(j(O, en))o ] 

- [  -~o jm(O)][ + j.(o)] } (A.24) 

Note that the spatial sum and the time integration cannot be interchanged. 
First one has to perform the spatial truncation and the spatial sum. The 
total current-current correlation function has then to be truncated in time 
and integrated over all times. The same structure was found for the 
one-dimensional system of hard rods. (31) 

APPENDIX 4 

We want the steady state to be independent of E. (2.1) results then in 

cE(x, y, rl)(e E'(x-y)(nx-ny) - l ) = 0  (A.25) 
x,y Ix-A = l 
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which  s h o u l d  b e  r e a d  as a n  e q u a t i o n  for  the  j u m p  ra tes .  T o  solve it in one  
d i m e n s i o n  we use t ha t  the  ra tes  d e p e n d  on ly  on  the nea r e s t  n e i g h b o r s  of 
the  b o n d  ( x , x  + 1) a n d  set 

c e ( x , x  + 1; 1, 

c E ( x , x  + 1;0,  

c e ( x , x  + 1; 1, 

1,0, 1) = a l ( E )  

1,0, 1) =  2(E) 

1,0,0)  =  3(e) 
(A.26)  

c E ( x , x  -4- 1;0,  1 ,0 ,0 )  = o:4(E ) 

wi th  the  ra tes  in  the  o p p o s i t e  d i r e c t i o n  d e t e r m i n e d  b y  the d e t a i l e d  b a l a n c e  
c o n d i t i o n  (1.5). (A.25)  is t hen  sa t i s f i ed  o n l y  if the  ra tes  a re  r e l a t ed  b y  

Ol 2 ~ eBo~3 
(A.27)  

oL 1 - oL 2 -  o~ 3 --1- o~ 4 = 0 

In l i nea r  r e s p o n s e  this  resu l t  was  n o t e d  in Ref .  13. If  we r equ i r e  in a d d i t i o n  
to (A.27)  t ha t  for  g iven  fl (1.7) s h o u l d  b e  sa t i s f ied  for  al l  E wi th  a f u n c t i o n  

i n d e p e n d e n t  of E ,  then  this is pos s ib l e  o n l y  for  fl = 0 a n d  ~,(h) = e -h /z .  
In  m o r e  t h a n  one  d i m e n s i o n  (A.25)  has  as on ly  so lu t i on  c z ( x , y , ~ )  

= e-E' (x-y)(~x-ny) /2 .  
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